Lessons 013-015 Named Discrete Distributions

Wednesday, October 11

Whether a single coin shows up heads is a Bernoullii random variable.

The number of flips of a coin until a head is seen is a Geometric random variable.

If a coin is flipped a set number of times, the number of heads is a Binomial random variable.

The Binomial Distribution

- If you have repeated, independent, Bernoulli trials, the total number of successes follows a Binomial Distribution.
- $X \sim \operatorname{Bin}(n, p)$, where n is the number of trials and p is the probability of success.
- For X, we have that $E[X]=n p$ and $\operatorname{var}(X)=n p(1-p)$.
- The PMF is given by
$p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad x=0,1, \ldots, n$

The number of flips of a coin until a set number of heads are seen is a Negative binomial random variable.

The Negative Binomial Distribution

- If you have repeated, independent, Bernoulli trials, the number of failures until a set number of successes follows a Negative Binomial Distribution.
- $X \sim \mathrm{NB}(r, p)$, where r is the number of successes and p is the probability of success.
. For X, we have that $E[X]=\frac{r(1-p)}{p}$ and $\operatorname{var}(X)=\frac{r(1-p)}{p^{2}}$.
- The PMF is given by
$p(x)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x} \quad x=0,1, \ldots$

The number of hearts drawn in a set number of cards with replacement is a Binomial random variable.

The number of hearts drawn in a set number of cards without replacement is a hypergeometric random variable.

The Hypergeometric Distribution

- If we sample from a finite population without replacement, the total number of successes follows a Hypergeometric Distribution.
- $X \sim \operatorname{HyperGeo}(N, M, n)$, where N is the population size, M is the number of successes, and n is the number of draws being made.
. For X, we have that $E[X]=n \frac{M}{N}$ and $\operatorname{var}(X)=\frac{N-n}{N-1} \cdot n \cdot \frac{M}{N}\left(1-\frac{N}{M}\right)$.
- The PMF is given by

$$
\begin{aligned}
& p(x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \\
& x=\max \{0, n+M-N\}, \ldots, \min \{n, M\}
\end{aligned}
$$

The Hypergeometric and Binomial Distributions

- A binomial distribution corresponds to sampling with replacement.
. We get $E[X]=n \frac{M}{N}$ and $\operatorname{var}(X)=n \cdot \frac{N}{M}\left(1-\frac{N}{M}\right)$.
- A hypergeometric distribution corresponds to sampling without replacement.
. We get $E[X]=n \frac{M}{N}$ and $\operatorname{var}(X)=\frac{N-n}{N-1} \cdot n \cdot \frac{M}{N}\left(1-\frac{N}{M}\right)$.
- The term $\frac{N-n}{N-1}$ is known as the finite population correction factor.
- If N is large, this will be approximately 1 and the binomial can approximate the hypergeometric.

What if we are not performing repeated trials?

The number of events that occur over a fixed window of time is a Poisson random variable.

The Poisson Distribution

- If events occur at a constant rate over a period of time (or constant rate over region in space), the number of events that occur during a window of time follows a Poisson random variable.
- $X \sim \operatorname{Poi}(\mu)$, where μ is the rate that events occur at.
- For X, we have that $E[X]=\mu$ and $\operatorname{var}(X)=\mu$.
- The PMF is given by

$$
p(x)=\frac{e^{-\mu} \mu^{x}}{x} \quad x=0,1,2, \ldots
$$

The Poisson Process

- Suppose that events occur at a rate of α per some unit of time.
- The number of events that occur in t time is expected to be αt.
- It is often reasonable to take $X \sim \operatorname{Poi}(\alpha t)$.
- This is the Poisson Process.
- To use the Poisson Process we must assume:
- Events occur at a constant rate;
- Events are independent of each other;
- No two events can occur simultaneously.

What is the most appropriate distribution for the following? In a manufacturing process, you're interested in the number of trials required to produce the first defective item.
Bernoulli 0\%Geometric
0 0\%
Binomial 0 0\%
Negative Binomial 0 0\%
Hypergeometric
0 0\%
Poisson
0 0\%

What is the most appropriate distribution for the following? A hospital wants to study the number of patients arriving at the emergency room in a fixed time interval, where the arrival rate is low and the events are rare.
Bernoulli 0\%
Geometric 0\%
Binomial 0\%
Negative BinomialHypergeometric
0 0\%
Poisson
0 0\%

What is the most appropriate distribution for the following? A quality control team inspects a batch of items and classifies the full batch as either defective or non-defective.
Bernoulli 0\%Geometric
0 0\%
Binomial 0 0\%
Negative Binomial 0 0\%
Hypergeometric
0 0\%
Poisson
0 0\%

What is the most appropriate distribution for the following? In a survey, you want to determine the number of people who prefer online shopping over in-store shopping.
Bernoulli 0\%Geometric
1 0\%
Binomial
0 0\%
Negative Binomial 0 0\%
Hypergeometric
0 0\%
Poisson
0 0\%

What is the most appropriate distribution for the following? An online streaming platform wants to model the number of times a specific video is watched in an hour, given a known average view rate.
BernoulliGeometric
0 0\%
Binomial 0\%
Negative Binomial
\boldsymbol{J} 0\%Hypergeometric
0 0\%
Poisson
0 0\%

What is the most appropriate distribution for the following? A baseball player wants is interested in the number of home runs they hit in a game, where the probability of hitting a home run is the same for each at-bat.
Bernoulli
0 0\%
Geometric
0 0\%
Binomial 0\%
Negative BinomialHypergeometric
0 0\%
Poisson
0 0\%

What is the most appropriate distribution for the following? A network remains functional as long as a certain number of backup routers are operational. A network engineer is interested in how many routers are needed to ensure network reliability.
Bernoulli 0\%
Geometric
\int 0\%
Binomial 0\%
Negative BinomialHypergeometric
0 0\%
Poisson
0 0\%

What is the most appropriate distribution for the following? A lawyer is interested in the finalized jury composition for a trial. and is particularly concerned with the number of women. 13 jurors are selected from the 50 candidates.
Bernoulli
1 0\%
Geometric 0\%
Binomial 0\%
Negative BinomialHypergeometric
\int 0\%
Poisson
0 0\%

